AD-A144 443 LOGLISP SEQUENTIAL FORMS WITH RESOLUTION SEHRNTICS(U) 11
) ROME AIR DEVELOPHENT CENTER GRIFFISS AFB NY R C SCHRAG
i JUL 84 RADC-TM-84-1

UNCLASSIFIED F/G 972

ERER.

b ’ A < ~ PE ARSI AR A D S

O T "
R O S e B < T ~
A m e T T T T T NN AT o

Rt Ea g e
el ey

) __SE
!

r
3
e

‘- i B2s N25
i £
. S —— E m L

il
II.S

k
: =
B2 s

“o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A)
- .

A NI

..

AD-A144 413

OTIE FILE copy

RADC-TM-84-13
in-House Report
June 1984

“why

LOGLISP SEQUENTIAL FORMS WITH r
RESOLUTION SEMANTICS ;-

Robert C. Schrag

TR

L

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
~ £ ECTE B
ATy .

= 5

®
ROME AIR DEVELOPMENT CENTER :
Air Force Systems Command
Griffiss Air Force Base, NY 13441

L J
¥

......

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TM-84-13 has been reviewed and is approved for publication. S

/Y 1%/ ' ?.i

SAMUEL A. DINITTO, JR.

Chief, Command & Control Software
Technology Branch ‘
Command and Control Division —

T

.

|~ APPROVED: Aa—-vl ' /1‘69»]

RAYMOND P. URTZ, JR. W
Technical Director -
Command and Control Division

FOR THE COMMANDER: /Mﬁ;ﬂ A

DONALD A. BRANTINGHAM
Acting Chief, Plans Office

rvrrwr'f
. . '

208

If your address has changed or if you wish to be removed from the RADC mailing

list, or if the addressee is no longer employed by your organization, please .
notify RADC { COES) Griffiss AFB NY 13441. This will assist us in maintaining S
a current mailing list.

1

r‘ Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

e

INCIASSTIFIED
SECUMITY CLASSIRICATION OF THIS PAGE

__]
REPORT DOCUMENTATION PAGE -

s AEPORT SECSAITY CLASSIFICATION 1. RESTRICT!VE MARAKINGS

UNCLASSIFIZD N/a

28 SECULAITY CLASSIFICATION AaUTHQRAITY J. JISTRIBUTION/AVAILABIL:TY OF REPCRT

N/A Approved for public release; distribution

2p. JECLASSISICATION/OCWNGRADING SCHECULE unlimited

N/A -
4 FEMECAMING QAGANIZATION AEPQAT NUMBERI(S) S. MONITORING ORGANIZATION REPORT NUMSBEAS)

N/A RADC-TM=-84-13

(1f applicadle)
Rome Air Development Center COES N/A

. 6e. AQDRESS (City. Stace and 2IP Code) 75. ADDRESS (City, Stace ang ZIP Caass -
Griffiss AFB NY 13441

Sa NAME I8 PEAFQRMING ORGANIZATION rh. QFSICE SYmMEBOL 7a. NAME OF MONITORAING CRGANIZATION

Sa. NAME OF SUNDING/SPONSORING 80. OFFICE SYMBOL |9. PAOCUREMENT INSTAUMENT (OENTIFICATION NUMBER
ORGANIZATION (11 appiicebie)
Rome Air Development Center COES N/A
8c. ACORESS City. 5tate and 2!P Code) 10. SOURCE OF FUNDING NOS. -
Grifftss AFB WY 13441 N AT
62702F | 5381 | 19 12
Il—!.-‘l'lT'Li tinciude Secunty Classificstion:
LOGLISP SEQUENTIAL FORMS WITH RESOLUTION SEMANTICS
12. PEASONAL AUTHOA(S)
Robert C. Schra "
13a TYPE OF ARPORT 136, TIME COVERED 14. OATE OF REPOAT Y., Mo.. Dey) 18. PAGE CCUNT -
-House #mom 20.Ian84 TO2Fehfs July 1984 18
16. SUPPLEMENTAAY NOTATION
N/A
17. COSAT! COCES 18. SURJECT TERMS (Conanue on reverse i necessary and idenafy by docs numoer:
S1€L0 GROUP suUs. GA. LogLisp
9 2 14 Logic Programming
q C9 ! 15

19. ASSTRACT Continue on reverse :/ necessary and identify dy docm numoer:
This memorandum describes an extension to the semantics of the LogLisp arx:ifical
intelligence programming language that allows resolution in sequential forms. The
execution cycle of Loglisp and the resolution semantics of existing special forms are
summarized, and the need for and definitions of resolution semantics for sequential 4
forms are p::esem:ed.T

20. JISTRIBUTION/AVAILABILITY OF A8STRACT 21, ASSTRACT SECLRITY Z_aSSiR.CATICN p
UNCLASSIFIED/UNLIMITED X SAME AS APT. _ 3TIC USERS — UNCLASSIFIED
225 NAME OF AESPONSISLE 'NOIVIOUAL 228, ’l::::‘-?:.l ;;:ul! 22c. SEE.CE SYMEOL T
’
Robert C. Schrag 315-330-2748 RADC (COES)
0D FORM 1473, 83 APR EDITION OF 1 LAN 7318 CBSCLETE. _NCILASSITIED

SECLUMITY SLASSIBICATION OF “wig 22 -2

R —p——— o T

Sy

—_—

Lo

1. Introduction.

A This memorandum describes an extension to the semantics of the

) LogLisp artificial intelligence programming language [Robinson and
Sibert 8la,b] that allows resolution in sequential forms. The execution
. cycle of LogLisp and the resolution semantics of existing special forms
'l are sumarized, and the need for and definitions of resolution semantics

for sequential forms are presented.

-y

s Accession qu
| NT1S GRA&I
DTIC TAB D
Unarraunced

Distr bation/
A\‘ik ahility Coies -
B Avatl and/or
Dist | Spedlal

A

wT

——

e Al el e ml el o a2

2. LogLisp”s Execution Cycle

LogLisp is a synthesis of Lisp and logic programming, implemented
in Lisp. The logic programming component of LogLisp, called Logic,
differs from conventional logic programming systems in two important
ways: it uses a heuristic, non-backtracking search strategy in
processing resolvent nodes; and it allows Lisp expressions to be
included in knowledge base clauses and queries, providing appropriate
reduction and resolution semantics for useful forms. Before resolution
with a goal is attempted, that goal is first reduced, or
Lisp-simplified, by performing evaluation of Lisp forms, conditioned on
the instantiation of any Logic variables contained in them.

If the chosen goal is Lisp-evaluable, then that goal is considered
-to succeed if its value i3 non-NIL. It i3 considered to fail if the
value is NIL. If simplification reduces the goal only partially or not
at all, resolution is then attempted, in the following order: using
facts, or ground clauses; using special resolution rules; and using rule
(non-ground) clauses. Ordinary unification is used in resolving with
facts and rules.

Special resolution rules exist for the following forms: =, AND,
R, and COND. The equality rule just attempts to unify its subforms.
The AND special form is essentially non-operative syntactic sugar—it
pushes its subforms onto the goal list of the parent node to create a
new resolvent node. The OR special form pushes each of its subforms
onto the parent node”s goal list separately, creating a new node for
each. The non-determinism of the Logic search strategy renders the
Logic OR“s subforms uncoupled as compared to the tight sequential
dependence of Lisp”s OR. In Lisp, the COND form is equivalent (modulo
unit clauses) to an OR form of AND forms containing the "test” subform
of the clause followed by a PROGN (implicit) of the clause”s remaining
subforms. This Lisp equivalence is illustrated in Figure 1.

Lisp COND Equivalent Lisp OR, AND, PROGN
(COND (TESTA RESULTAL RESULTA2) (R (AND TESTA
(PROGN RESULTAL RESULTA2))
(TESTB RESULTB) (AND TESTB RESULTB)
(TESTC)) TESTC)
Figure 1

—

v T - - - —w ~ Rl St S Senth e Janih S S Sa g se i S es as Sede
AR RN AR . <. - NEARAR . R PR My

LogLisp’s Execution Cycle L

The COND special form of Logic exists to perait resolution on

clause test subforms. Because of the standard if-then-else sequential NS
N connotation of COND, the Logic resolution semantics of COND preserves o
= Lisp”s sequential treatment of the OR in the equivalent form, rather oy
.l than creating separate, independent deduction nodes for each AND subform

(clause). The COND special form resolves on the test of its first
clause, generating resolvent nodes which include continuations that
store both the clause”s "result”™ forms (implicit PROGN) to be processed »
in case the resolvent process succeeds, and the COND“s remaining clauses 7~4
to be processed in case all this clause”s (test”s) resolvent processes
lead to failure. While no special resolution rule exists in current ,
LogLisp for PROGN, it is a "feature” of the reduction semantics for a)
top-level PROGN that its last subform has predicate status. This
feature extends as well to the implicit PROGN“s of COND clause tails.

With these observations, the forms of Logic can be classified into -
two types: predicate forms, which occur at the top level of clauses, as
AND and OR special form top-level subforms, as COND special form test
subforms, and as the last subform of explicit and implicit PROGN forus
with predicate status; and functor forms, the subforms at any level of A
non-special predicate forms. Predicate forms either succeed or fail. A S
Lisp predicate form succeeds when it evaluates to other than NIL; it ;;J
fails if it evaluates to NIL or is unevaluable (and has no Logic
definition). A Logic predicate succeeds if it can be resolved using a
clause in the knowledge base or a special resolution rule, and fails
otherwise. The success properties of predicate forms are summarized in
Table 1.

Logic predicate forms Lisp predicate foras
resolvable | unresolvable evaluable |unevaluable
success always never if non-NIL never B
failure never always 1f NIL always —
Table 1
Logic and Lisp functor forms differ only in that the latter can be
affected by simplification before unification and the former are not. -
h
-3 - =

LogLisp”s Execution Cycle

Table 2 1is provided to clarify the predicate and functor
conpositions of Lisp forms for which predicate subforms can occur.

predicate functor
(AND . predicate~forms) (AND . functor-forms) ;
(R . predicate-forms) (R . functor—-forms) 1
(PROGN . (functor-forms | predicate~form)) (PROGN . functor-forms) C
{COND combines compositions for OR, AND, PROGN--see Figure 1} ; —
Table 2
Note that in a predicate PROGN form only the last subform has predicate ’
status. All other (Lisp, functor) subforms are evaluated for o
side-effect only. The predicate PROGN form fails if any of these Lisp ' 1
side-effects cannot be performed (because of uninstantiated Logic ‘
variables).
| S,
r. L
—
L.
LS
> ___
-4 - "

- :':;4

. ,

3. Loglisp and Side-effects o
LogLisp combines Lisp, a side-effecting (multiple-assignment))
programming facility, with the side—effect-free (single-assignment) o
formalism of logic programming. The logic programming variables of]
Logic can only be instantiated through unification, but the provision)
for Lisp simplification affords the opportunity for arbitrary Lisp
side-effects to be performed by Logic code. Common side-effecting
operations of Lisp are listed in Table 3.
; 1
'l effect performed by effect accessible through i 7
PUTPROP GETPROP
RPLACA CAR 3
RPLACD CDR
DEFINEQ pname o
SETQ pname {!})
1
Table 3 I
When these multiple-assigmment Lisp operations are performed by -';*
Logic code, their effects can be communicated to subsequent operationms .
in that code by virtue of the Logic/Lisp (reduction) interface. The ~

- effects of PUTPROP’s and RPLAC”s are available through the appropriate L
accessor functions. The effect of a DEFINEQ is accessible through the -
identifier”s pname when it appears at the head of a list. Because of S
LogLisp”s implicit quoting of non-head proper identifiers, the effect of ;;d
a SETQ is available only through explicit EVALuation of the bound
identifier. This poses no real problem in Logic code, and EVAL serves
28 3 signal that reference to a global Lisp object is being made.

Communication among the predications of a Logic clause is of course
also done with logic programming variables instantiated in unification,
a8 in any other logic programming dialect. Unification is the
single—assignment operation whose effects (bindings) are accessible
through reference to variable i{dentifiers, much as Lisp variable
bindings are (in Lisp). In the anon-terminal subforms of Logic s only
present sequential form—PROGN--, however, only Lisp communication
sechanisms are available. Their lack of predicate status precludes the
Logic communication mechanism of unification. This poses a problem for
sequential Logic computations which must nake subsequent reference to
intermediate results. o

LogLisp and Side-effects

SETQ (and other Lisp side-effecting forms) are unattractive for
this purpose because they require the creation of an object global to
the entire Logic computation, to satisfy a strictly temporal need.
Preceeding the PROG with a local variable declaration predicate
guaranteed to succeed (as defined by the clause:

(1= (Local-Logic-variables . any-Logic-variable-names))) is perhaps
less disagreeable, but variable declaration is contrary to logic
programming principles. A mechanism to allow resolution with the
non-terainal subforms of seaquential Logic forms solves this problem.

P P D TP S e i A . -

-s-—---d
LI
i
b
)
y
»
et
| S
.4

4. The New Sequential Forms

Successful programming with Logic sequential forms using
communication of intermediate values requires that all subforms possess
a status which permits assignment operations, including unification.
The sequential form should fail if and only 1if the operation specified
by one of its subforms cannot be performed. For a Lisp subform, failure
will occur when evaluation is impossible. When the subform is fully
instantiated, the evaluation”s results or actual binding or not binding
of (global) Lisp objects do not matter to its success. For a Logic
subform, failure will occur when the subform leads to immediate or
ultimate failure. The desired success properties that subforms confer
on sequential forms are sur—marized in Table 4.

Logic sequential subforms Lisp sequential subforms
resolvable | unresolvable evaluable unevaluable
success always never always never
failure never always never always
Table 4

Terminal Lisp subforms in PROGN predicates represent an axception
to the above success specifications, since intuitively one expects a
PROGN to “return” its last value and this is the current semantics. The
InterLisp implementation of LogLisp V2M3 [Schrag 83] has been modified
to extend resolution semantics to PROGN, with sequential subform
treatment. The function #RESPROGN is employed. Note that this
resolution semantics also extends to the implicit PROGN”s of COND clause
tails.

A "pure” sequential form, SEQUENCE, is also provided. This form
always succeeds 1f the side-effects of its subforms can be performed,
and treats the terminal subform no differently from its predecessors.
This form is also implemented in InterLisp LogLisp V2M3. SEQUENCE is
defined as a Lisp funetion, reduction semantics for it are bestowed by
#VALSEQUENCE, and resolution semantics for it by #RESSEQUENCE.

S ittt

’
«
PEEY SR Y

e e et e e L S
TR B e " — & 2 — . .- - -
A e e, D P N ” A L v

., -"-‘ LA e by

The New éequential Forms

Figure 2 demonstrates the utility of resolution semantics for Logic
3 sequential forms with two example clauses from a pattern-matching
production rule interpreter. Logic predicates and functors are shown as
identi{fiers with initial letter capitalized and remaining letters lower
v case. If input can be Matched against the clause”s specfic Pattern,

o then, if a SEQUENCE of global Lisp actions can be performed, the clause y
. succeeds. .

equality unification

i (- (Interpret input) <- (Match input (Patterna x y))
(SEQUENCE (= tempvar (CALCULAIE x y))
' (GLOBAL-ACTION1 tempvar)
(GLOBAL-ACTION2 tempvar)))

PR v

(a)

deduction unification

(|- (Interpret input) <- (Match input (Pattermb x)) _
(SEQUENCE (Deduce tempvar x)) o
(GLOBAL~ACTION1 tempvar)
(GLOBAL~ACTION2 tempvar))) -

P p—_— Y A

(b)
Figure 2)
h Two types of temporary Logic variable instantiation are illustrated. In -
Figure 2(a) a Logic variable is instantiated to the value of a Lisp o

function call using the = special resolution form. In Figure 2(b) a
Logic variable is instantiated by Deduction (or data base look-up) of a
Logic relation.

The code for implementing functions mentioned follows. Obvious
modifications to MEDINIT and #INITX, and definitioms for AUTOPROGN and
AUTOSEQUENCE, have also been made.

‘,T\

i

— WS W TR TR W YW mw Ty T L TR TU— cm g o w e —o w

The New Sequential Forms

(#RESPROGN
[LAMBDA NIL
(PROG (HDTL LN NDRV)
(SETQ HDTL (#TSHOW (CDR #HD)
4HDR))
(COND
((EQ #TLL 0)
(RETURN)))
(SETQ LN (ADDl LP))
[SETQ NDRV (COND
(*HISTORIES (COND
(NOHIST (CAR #HIST))
((CONS (QUOTE ((PROGN . Rule)
PROGN-RULE
(Special Rule)))
#HIST]
(SETQ RESULT (CONS (CONSM LN NDRV #CNTN
' (CONS (LIST #HDK (CAR HDTL)
(CONS (QUOTE PROGN)
(CDR HDTL)))
#SEGTL)
#C)
RESULT))
(RETURN])

ey

The New Sequential Forms

(SEQUENCE
[NLAMBDA L
(EVAL (CONS (QUOTE PROGYN)
L))
T

(#V ALSEQUENCE
(LAMBDA NIL
(PROG (#D #RPRG #PRGL)
(SETQ #RE (SETQ #RPRG NIL))
(SETQ #PRGL (CDR #E))
LOOP(#ULTX #PRGL #1)
(COND
((NULL #PRGL) **COMMENT**
(SETQ #RE T)
(RETURN T))
((#VARIABLE #PRGL)
[COND
((SETQ #R #RPRG)
(SETQ #RE (CONS (QUOTE SEQUENCE)
#PRGL]
(RETURN NIL)))
(SETQ #D (CAR #PRGL))
(SETQ #PRGL (CDR #PRGL))
[COND
((#VALRED #D #I)
(SETQ #RPRG T)
(GO LOOP))
(#Q [COND
(#PRGL (SETQ #RE (CONSM (QUOTE SEQUENCE)
#RE #PRGL]
(SETQ #R T))
[#PRGL (COND
((SETQ #R #RPRG)
(SETQ #RE (CONSM (QUOTE SEQUENCE)
#D #PRGL)
((SETQ #R #RPRG)
(SETQ #RE (LIST (QUOTE SEQUENCE)
#D]
(RETURN NIL])

- 10 -

-

-

=

P)

[.
L. L,

The Yew Sequential Forms

(#RESSEQUENCE
[LAMBDA NIL
(PROG (HDTL LN NDRV)
(SETQ HDTL {(#TSHOW (CDR #HD)
#HDK)) _

Ly

(COND
((EQ #TLL 0)
(RETURN)))
(SETQ LN (ADD1 LP))
: {SETQ NDRV (COND)
R (*HISTORIES (COND -
. (NOHIST (CAR #HIST))
((CONS (QUOTE ((SEQUENCE . Rule)
SEQUENCE-RULE
(Special Rule)))

PO

#uIST) 1
(SETQ RESULT (CONS (CONSM LN NDRV #CNTN]
(CONS (LIST #HDK (CAR HDTL)
(CONS (QUOTE SEQUENCE) 1
' (COR HDTL)))
#SEGTL) 1
#cy .
RESULT)) o]

(RETURY])

- 1] -

,—r-ﬁ N

P v T ——_—— T — - -

5. References

[Robinson and Sibert 8la] J.A. Robinson and E.E. Sibert. The LogLisp

User”s Manual, unpublished interim technical report, 1981.

[Robinson and Sibert 81b] J.A. Robinson and E.E. Sibert. LogLisp

Implementation Notes, unpublished interim technical report, 1981.

[Schrag 83] R.C. Schrag. Notes on the Conversion of Loglisp from

Rutgers/UCI-Lisp to Interlisp, RADC-TM-83-1, 1383. ap# A127718

_— e o -

£ 65 90 S0 S0 S S K S L RS R LA L

)

F IS HSF RS HSS

MISSION
of
Rome Air Development Center

RADC plans and executes rzsearch, development, tesi and
selected acgulsition programs in suppont of Command, Ceontrcld
Communications and Tntelligence (C31) activitiss. Technical
and engineening support within areas of technical competence
4 provided to ESD Program 0f4ices (P0s) and othern ESD
elaments. The principal Zechnical mission areas are
communications, electromagnetic gudldance and control, sut-
vellance 0f ground and aerosdpace obfects, intelligence datz
collection and handling, {nfoamation systam technolegy,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

CR WA LA L LA T A L LA LA

<{

¥

59

|

|

ot

-

—me i A RN 3 —

L

.

155 JH5F HESF 0 LF NS I SK 90 SF S5 XS 0 SF I SF X

P

